Interrelation of dopamine transporter oligomerization and surface presence as studied with mutant transporter proteins and amphetamine.
نویسندگان
چکیده
Our previous work suggested a role for oligomerization in regulating dopamine transporter (DAT) internalization, with d-amphetamine dissociating DAT oligomers and monomers being endocytosed. This model was put to detailed testing in the present work with the use of DAT constructs differentially tagged with Myc or Flag, reversal of tags in co-immunoprecipitation and cross-linking assays, and application of antibodies against different tags in biotinylation experiments. Upon pairing wild-type (WT) DAT with W84L mutant, effects of d-amphetamine on oligomerization (decrease) but not surface DAT are observed. Internalization of W84L monomers appears to be slow as inferred from the inability of d-amphetamine to reduce surface Myc upon co-expressing Flag-WT with Myc-W84L but not Myc-WT with Flag-W84L, and from the sluggish Myc-W84L endocytosis rate (both with or without d-amphetamine). Results obtained for D313N, D345N, or D436N mutants can all be accommodated by a model in which D-amphetamine is unable to dissociate mutant protomers from oligomers (tetramers or higher-order assemblies) that contain them; this interpretation is confirmed in experiments with both tag reversal in co-expression and antibody reversal in western blotting. Upon co-transfecting Myc- and Flag-tagged constructs, resulting tetramers can be calculated to be composed of different species (MycMycMycMyc, MycMycMycFlag, MycMycFlagFlag, MycFlagFlagFlag, and FlagFlagFlagFlag), but it is shown that outcomes predicted by models based on MycMycFlagFlag oligomers are not changed in a major way by the occurrence of the additional species.
منابع مشابه
Dopamine Transporter Efflux in ADHD
Elevated dopamine efflux through the dopamine transporter may underlie some forms of attention-deficit hyperactivity disorder (ADHD), according to MazeiRobison et al. The authors identified a mutant form of dopamine transporter in two siblings with ADHD and expressed the mutant and wild-type forms in HEK-293T cells. Although expression levels and dopamine uptake were similar for mutant and wild...
متن کاملA C-terminal PDZ domain binding sequence is required for striatal distribution of the dopamine transporter
The dopamine transporter mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling dopamine transporter levels in striatal nerve terminals remain poorly understood. The dopamine transporters contain a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain-binding sequence believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here...
متن کاملZn2+ modulates currents generated by the dopamine transporter: parallel effects on amphetamine-induced charge transfer and release.
The psychostimulant drug amphetamine increases extracellular monamines in the brain acting on neurotransmitter transporters, especially the dopamine transporter. Mediated by this plasmalemmal pump, amphetamine does not only induce release but also charge transfer which might be involved in the release mechanism. To study a potential link between the two phenomena, we used Zn(2+) as an acute reg...
متن کاملSingle-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant.
The presynaptic, cocaine- and amphetamine-sensitive dopamine (DA) transporter (DAT, SLC6A3) controls the intensity and duration of synaptic dopamine signals by rapid clearance of DA back into presynaptic nerve terminals. Abnormalities in DAT-mediated DA clearance have been linked to a variety of neuropsychiatric disorders, including addiction, autism, and attention deficit/hyperactivity disorde...
متن کاملIon dependence of carrier-mediated release in dopamine or norepinephrine transporter-transfected cells questions the hypothesis of facilitated exchange diffusion.
The mechanism of release mediated by the human dopamine and norepinephrine transporter (DAT and NET, respectively) was studied by a superfusion technique in human embryonic kidney 293 cells stably transfected with the respective transporter cDNA and loaded with the metabolically inert substrate [(3)H]1-methyl-4-phenylpyridinium. Release was induced by amphetamine, dopamine, and norepinephrine o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 114 3 شماره
صفحات -
تاریخ انتشار 2010